Course Description:
This is a one-semester course that extends fundamental concepts in chemistry, such as equilibrium, acid/base chemistry and thermodynamics into an exploration of biology. The content includes: 1) applying equilibrium processes to study biochemical reactions as well as cell structure, 2) studying the structure and function of amino acids and proteins, 3) analyzing the kinetic parameters of enzymes including different mechanisms of how drugs are used to inhibit enzymes, and 4) understanding and making connections in metabolism. The course is lab-based and students will gain experience in various bio-techniques to investigate these topics. The majority of the content is encountered through a guided inquiry process.

Instructor:
Dr. Angie Ahrendt Office: B105A
Email: aahrendt@imsa.edu Phone: 630/907-5021

Meeting Days, Times Room: A207
BD 5/6

Office Hours: A and C days mod 3 or by appointment

Text/Materials:
Text: Biochemistry; The Molecular Basis of Life, 3rd Edition, M&Kee & M&Kee
Additional classroom materials are posted on Moodle
Calculators and laptop computers are required
Logger Pro is required
Folder/binder to keep all materials organized

Student Learning Objectives:

1. Water and Equilibrium
 a. Molecular Structure of Water
 b. Intermolecular Forces
 c. Thermal Properties of Water
 d. Solvent Properties of Water
 - hydrophillic, hydrophobic, and amphipathic molecules
 - osmotic pressure
 e. Equilibrium
 f. Ionization of Water
 - Acids, bases, and pH

2. Amino Acids, Peptides, and Proteins
 a. Amino Acids
 b. Peptides
 c. Proteins
3. Enzymes
 a. Properties of Enzymes
 b. Classification of Enzymes
 c. Enzyme Kinetics
 -Michaelis-Menten Kinetics
 -Lineweaver-Burk Plots
 -Enzyme Inhibition
 d. Catalysis
 -Catalytic Mechanisms
 -The Role of Cofactors in Enzyme Catalysis
 -Effects of Temperature and pH on Enzyme-Catalyzed Reactions
 -Detailed Mechanisms of Enzyme Catalysis
 e. Enzyme Regulation
 -Genetic Control
 -Covalent Modification
 -Allosteric Regulation

4. Metabolism
 a. Carbohydrate metabolism
 b. Connections and regulations in metabolic pathways

5. Biotechnology
 a. Gel Electrophoresis
 b. Gel Filtration Chromatography
 c. Immobilized Metal Affinity Chromatography
 d. Ion Exchange Chromatography

Assessment
There will be a variety of assessments consisting of homework, presentations, and in-class assessments, measured as follows:
1) Ability to reflect and demonstrate understanding on experiments through lab reports.
2) Ability to communicate their learning through presentations and class discussions.
3) Performance on quizzes and tests.
4) Ability to demonstrate understanding through writing assignments such as papers, paragraphs, and problem sets.

The grade break down will be
90% and above: A
80% and above: B
70% and above: C
60% and above: D

Grades are weighted: Exams and Quizzes are 60% of the final grade; Labs and Homework are 40% of the final grade.

SSLS and Outcomes:
IA= Informally Assessed; FA=Formally Assessed; NA=Not Assessed; ABNA=Addressed But Not Assessed
I. Developing the Tools of Thought
A. Develop automaticity in skills, concepts, and processes that support and enable complex thought. This is done through lab observations, data collection, graphing, analysis, use of significant figures, and using lab equipment properly. FA
B. Construct questions which further understanding, forge connections, and deepen meaning. This is done by analyzing data to draw conclusions and relate it to the concept. FA
C. Precisely observes phenomena and accurately record findings. This is done through laboratory observations, data collection and analysis, using estimated digits and significant figures. FA
D. Evaluate the soundness and relevance of information and reasoning. This is done by drawing conclusions from laboratory data. FA

II. Thinking About Thinking
A. Identify unexamined cultural, historical, and personal assumptions and misconceptions that impede and skew inquiry. This is done by using Lewis dot structures and looking at Bohr models. FA
B. Find and analyze ambiguities inherent within any set of textual, social, physical, or theoretical circumstances. ABNA

III. Extending and Integrating Thought
A. Use appropriate technologies as extensions of the mind. This is done by the use of calculators and computers. IA
B. Recognize, pursue, and explain substantive connections within and among areas of knowledge. This is done by making historical connections to the scientists as well as mathematical connections. FA
C. Recreate the beautiful conceptions that give coherence to structures of thought. This is done through analyzing and learning about molecular structures, atomic structures, geometry, and vectors. IA

IV. Expressing and Evaluating Constructs
A. Construct and support judgments based on evidence. This is done by laboratory exploration, constructing laboratory reports as well as making generalizations. FA
B. Write and speak with power, economy, and elegance. This is done through lab practicals and reports, and writing paragraphs demonstrating their understanding through discussions. FA
C. Identify and characterize the composing elements of dynamic and organic wholes, structures, and systems. This is done by applying basic electronic structures to chemical formulas, periodic trends, and properties of substances. FA
D. Develop an aesthetic awareness and capability. This is done by drawing attention to links between current content and the world around them. ABNA

V. Thinking and Acting with Others
A. Make reasoned decisions which reflect ethical standards, and act in accordance with those decisions. This is done by not manipulating data to fit conclusions and preventing plagiarism in lab reports. FA

Instructional Design and Approach:
Key to the experience of Biochemistry is a student’s active participation in the process of scientific investigation. Students work individually and cooperatively to build an understanding of fundamental biochemical concepts. The essential experience is grounded in inquiry pursued through laboratory
based activities. These activities develop the habits and skills of safe and accurate data acquisition. Analysis, results and conclusions are then communicated and assessed.

Student Expectations

The experience you have in this course will be directly related to your level of participation. One cannot choose to be a nonparticipant and expect to reap all of the possible benefits. Therefore, we have established some expectations for you:

- Be on time for class and bring the required materials, including your completed homework assignments. Students who are more than 5 minutes late will be given an unexcused absence. Refer to the Student Handbook for specific effects of excessive tardies and absences. There will be NO credit awarded for make-up work due to unexcused absences. It is the responsibility of each student to arrange for make-up work due to excused absences (preferably in advance!).

- If you are going to miss any part of class for a field trip or a sport you must come to class before you leave or when you return, even if it is only for 15 minutes. Infractions will receive an unexcused absence.

- Late work will receive a 10% penalty per day. Once the material has been assessed and returned to any of the other sections, it cannot be submitted for late credit.

- Collaboration is encouraged throughout all facets of this course. Academic dishonesty, however, is not. It is expected that students will discuss laboratory results, and partners will share common data, but each student will complete and turn in their own lab report (no group reports unless specifically assigned).

- Cell phones will be put inside backpacks and backpacks will be placed in the back of the class room during quizzes and tests. No bathroom breaks during quizzes/tests. Academic dishonesty will be reported.

- Laptops and cell phones are only to be used when necessary for performing class work. No games, facebook, etc. during class. No music can be played without using headphones and only with permission.

- Wear closed toed shoes every class in case we go into the lab. No eating or drinking in the lab. No sitting on the lab benches.

- You may not work on other classwork in this class until you have demonstrated that you have completed all of the course work.

- Bring a calculator to class. If you must borrow a calculator for an assessment, a 5% penalty will be applied.

- Download Logger Pro. If you must work with another group due to not having Logger Pro, a 5% penalty will be applied to your lab report.