
Comprehensive Course Syllabus

Course Title
Computational Science

Course Description:
Computational Science offers an introduction to using computer programming to solve science
problems. Students will learn to apply programs they have written to real problems in physics,
chemistry, biology, and other sciences. The course will discuss Monte Carlo methodology,
minimization, finite element analysis, machine learning, and simulations. Assignments apply
object orientation, polymorphism, and data structures to problems such as projectile motion,
thermodynamics, reaction rates, natural selection, gravitational interactions, and population
dynamics.

I . I N S T R U C T O R (S) :
• Name(s): Peter Dong

• Office Number(s) (When and where you are available for help.): B117

• Telephone number(s): (630) 907-5476

• Email address(es): pdong@imsa.edu

Meeting Days, Time and Room(s)
in2, A-C days, mods 5-6
in2, B-D days, mods 7-8

Text(s) / Materials:
No textbook will be used. Students will use their own computers, and additional material is
available online.

Essential Content:
The relevant Science Team standards are:
A.2 designing and planning investigations and constructing questions which further
understanding, forge connections, and deepen meaning. [IL-11.A.5b][NSES-A]
A.3 carrying out investigations that develop skills, concepts, and processes that support and
enable complex thought. [IL-11.A.5c][NSES-A]
A.4 using appropriate technologies to collect, analyze and present information. [IL-
11.A.5c][NSES-A]
A.6 supporting judgments and constructing models based on evidence. [IL-11.A.5e][NSES-A]
A.8 examining current issues in science and technology. [IL-][NSES-G]

The primary standard is, of course, A.4, since the entire course is predicated on using technology
to analyze information. However, this requires students to develop and plan out their
investigations (A.2 and A.3). In fact, the planning of the investigation (in this case, the program
the students are writing) is more important than the details of the program – the students will
learn how to use computer programs to answer scientific questions and make scientific
predictions. This leads directly to standard A.6, since they will be constructing computer
models, testing them against experiment, and drawing appropriate conclusions.

Some students, based on their prior knowledge, may also gain substantial understanding of a
specific content area in chemistry, biology, or physics; for example, those who have not taken
EBE will learn a lot about ecology and genetics, and students may get substantial insight into
statistical mechanics and other areas such as astronomy or geology.

SSLs and Outcomes:
The primary SSL for this course is, of course, III-A: Use appropriate technologies as extensions
of the mind. Supporting this will be I-A: Develop automaticity in skills, concepts, and processes
that support and enable complex thought. In this case, I-A refers to programming skills, used to
allow students to achieve III-A, which allows them to improve their skills in several other SSLs,
including:

I.B Construct questions which further understanding, forge connections, and deepen meaning.
I.D Evaluate the soundness and relevance of information and reasoning.
II.B Recognize, pursue, and explain substantive connections within and among areas of
knowledge.
III.C Recreate the beautiful conceptions that give coherence to structures of thought.

SSL I-A will be met by a semester’s worth of programming projects, which will help students
develop automaticity in basic programming. This will allow them to use computers usefully, as
extensions of the mind, to aid scientific research (SSL III-A). Lessons, homework, and projects,
will all be focused on the ability to transfer scientific concepts into programming constructs that
can be used to answer scientific questions. This is the primary outcome of the class. However,
students will also practice coming up with specific questions formulated in a way that computer
programs can answer (I-B) when planning projects; they evaluate the accuracy and reliability (or,
more often, lack thereof) of computer simulations (I-D) when we test their computer predictions
against reality; they use similarity of program structure to explore connections between different

branches of science (II-B) when we use the same libraries in different applications; and, overall,
they recreate in a computer the conceptions that give coherence to scientific thought (III-C).

Instructional Design and Approach:
This course is designed to be open-ended and project-driven, and is integrative by its very nature.
Students are expected to be actively designing and programming for most of each class period.
While some assignments will be structured and lead students through the methodology, others
will be very open-ended, thus encouraging inquiry. Projects will be oriented around science
problems, and thus the class is heavily problem-centered.

Student Expectations:
Students are expected to show maturity and the ability to work well outside of class. Late
assignments will be penalized 10% per 24-hour period or fraction thereof. However, students are
given five indulgences per quarter, by which they can be late without penalty. Tardiness and
unexcused absences will be dealt with according to standard IMSA policy. Students are
expected to remain on-task on their computer for the entire class period. Students who are
consistently and conspicuously off-task are a detriment to the learning environment and may be
penalized without warning by loss of points on the relevant assignment.

Students are expected to write their own code themselves. They are encouraged to talk to others,
including the teacher, with the understanding that all the actual typing was done individually.
Tangential algorithms for a large assignment may come from online sources and should be
properly identified in the comments.

Assessment Practices, Procedures, and Processes:
All assessments are programming assignments, categorized as homework or projects.
Homework assignments consist of programming tasks of increasing difficulty that build upon
one another, labeled as Level I, Level II, Level III, and Challenge. Assignments will be graded
with a maximum score based on which level the students successfully complete:

 Level I – 70%
 Level II – 80%
 Level III – 90%
 Challenge – 100%

Code will be evaluated on design, clarity, and robustness, in roughly that order. “Design” refers
to a sensible translation of physical quantities and variables into computational constructs. This
includes lack of cut-and-paste in code, good use of functions, class structure, proper use of
inheritance, and well-chosen data structures. “Clarity” refers to proper physical structure of
code: good use of space and indentation, good comments, well-named variables, and lack of
“magic numbers” or confusing code constructs. “Robustness” refers to program behavior in
situations of unusual inputs and includes error checking, array bounds-checking, and exception
handling. Note that there is little emphasis on algorithmic structure, which is not the focus of the
class.

Homework assignments will generally be weighted equally. Each of the four sub-units will have
a final project which will be worth three times a homework assignment. Students will complete
the last project during finals period, but there are no timed examinations in this class.

Sequence of Topics and Activities

Unit 1 (7 weeks): Euler’s method and finite element analysis with Newtonian mechanics. About
three weeks of “boot camp” to go over basics of scientific programming in the framework of
simple kinematic behaviors, to get everyone at the same level. Following this, finite element
analysis to examine extended objects, culminating with a project on bridge building or marbles.

Unit 2 (5 weeks): Monte Carlo methods with biochemistry. Understanding principles of
modeling molecules thermodynamically, then expanding this to chemistry. Use a chemical
model to make predictions about a biological system (beta-galactosidase).

Unit 3 (5 weeks): Inference, machine learning, and parallelization with seismology. Use
earthquakes to determine the makeup of a planet, and apply a boosted decision tree to separate a
signal from a background in Planetary Pirates.

Unit 4 (4 weeks): Evolutionary algorithms with (appropriately) evolution. Create animal
behaviors by an evolutionarily trained multi-layer perceptron. Have students’ animal behaviors
compete against each other in the Hunger Games final project.

	I. INSTRUCTOR(S):

