Recommendations for Core Biology Program to the Board of Trustees May 20, 2020

Faculty: Dr. Don Dosch and Dr. Crystal Randall OIR: Ms. Hannah Anderson and Dr. Amber Pareja Administrators: Dr. Comfort Akwaji-Anderson and Dr. Robert Hernandez

Outline

Reimagining Introductory Biology: A Pilot Study (Office of Institutional Research)

- Response to research questions
- Changes to study design

Advanced Biological Systems (ABS) Pedagogy

- Alignment with institutional priorities
- Science education research
- Science elective courses

Future directions

- Recommendations for 20-21 school year
- Work Plan for 21-22 school year

Purpose of the Pilot Study

- To compare and contrast the effectiveness of the ABS course to the Scientific Inquiry (SI)-Biology course
- To identify whether the ABS course leads to:
 - Better teaching and learning of complex biological concepts
 - Better student outcomes

Research Questions

- Do students who complete the ABS course have an increased level of content knowledge and enhanced critical thinking, model-building, and ability to make connections to real world issues?
 - Are they more likely to get higher grades and less likely to fail the course?
 - Do they report higher levels of engagement with the course material?
- Do students who complete ABS course have better course performance in subsequent science courses?
 - How is their subsequent performance in other courses?
- Do students who complete the ABS course have a different electives-taking pattern?

Increased Content Knowledge and Enhanced Critical Thinking

- Pre-Post Study & Pre-Post Course Exams
 - Inconclusive based on the psychometric properties of the assessments (i.e., validity and reliability)
- CWRA+ Exam
 - No significant differences between ABS and SI-Biology in Fall 2017/Spring 2019 administrations
 - No significant differences in growth on CWRA+ from Fall 2017 to Spring 2019
- Lack of student effort on the Post-Study, Post-Course, & CWRA+ Exams may have influenced results
 - Students spent a minimal amount of time completing the assessments due to their low-stakes nature

Increased Content Knowledge and Enhanced Critical Thinking

- Biology Course Grades
 - On average, students in ABS received higher course grades than students in SI-Biology
 - Mean of 3.14 (SI-Bio) vs. 3.23 (ABS) with p < .05

Increased Content Knowledge and Enhanced Critical Thinking

- Biology Motivation Questionnaire II
 - Assesses five components of students' motivation to learn Biology: Intrinsic Motivation, Self-Efficacy, Self-Determination, Grade Motivation, and Career Motivation (Glynn et al., 2011)
 - Results may have been influenced by student attitudes regarding the study

Pre-Course: SI-Bio not significantly different than ABS

Post-Course: SI-Bio significantly stronger than ABS ($p \le .001$)

Motivation Questionnaire Mean Comparisons

Performance in Non-Biology Courses

- Students in ABS received slightly higher grades than students in SI-Bio: 90.34 vs. 89.99 (p < .01)
- Grades by Year
 - ABS significantly higher than SI-Biology during sophomore year: 90.29 vs. 87.26 (p < .01)
 - No significant difference between ABS and SI-Biology during junior or senior years
- Science vs. Non-Science Grades
 - ABS significantly higher than SI-Biology for non-science courses, during sophomore year: 90.42 vs. 89.89 (p < .05)
 - No significant difference between ABS and SI-Bio for science courses, during sophomore year
 - No significant difference between for science and non-science courses during junior or senior years

Course Performance

Illinois Mathematics and Science Academy

Electives-Taking Pattern

- Students in ABS took fewer science electives during junior year compared to students in SI-Biology
- During senior year, the number of science electives was the same

Changes to Study Design

- Student Interviews
 - Study Effect
 - Incoming sophomores influenced by upperclassmen to oppose new ABS course
 - Opposition from some faculty members communicated to students
 - Difficult to assess whether or not the opinions held by the students are specific to the course or are a result of influences above
 - Significant time to interview, transcribe, code, and analyze
 - Substituted interviews with the Biology Motivation Questionnaire II to assess student engagement
- Teacher Journaling
 - Significant time to execute on a weekly basis
 - Substituted journaling with teacher interviews conducted about once a semester

Challenges with Data Interpretation

Assessments

- Significant student push back
- Low stakes assessment
- Exams inconclusive
- ABS curriculum developed after the study began and not fully align with assessments
- Student surveys (motivation and course)
 - Students often resistant to active learning despite the benefits
 - Deslauriers, L et al. (2019) Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. PNAS, 116 (39) 19251-19258
 - □ Finelli, C. J.,*et al.* (2018). Reducing student resistance to active learning: Strategies for instructors. Journal of College Science Teaching, 47(5), 80–91

=

ABS Pedagogy

- Alignment with institutional priorities
 - United Nations Sustainable Development Goals (UNSDG)
 - Provide context for curriculum
 - Allows students to see interdisciplinary nature of biological problems
 - Equity
 - Student centered learning
 - No prior knowledge needed
 - Increases student access to core concepts
 - Chamany K.et al.(2017)Making biology learning relevant to students: Integrating peolple, history and context into college biology teaching. CBE-Life Sciences Education 7(3),267-278

Illinois Mathematics and Science Academy

- Allows for differentiation and scaffolding
 - Eddy L. Sarah and Hogan A Kelly.(2014) Getting Under the Hood: How and for Whom Increasing Course Structure Work? CBE—Life Sciences Education.1.24458-456

Vision and Change: A Science Education Report

- American Association for the Advancement of Science (AAAS): <u>Vision and Change</u>
 - Outlines best practices for teaching biology
 - Student centered learning
 - Content in context
 - Varied assessment strategies
 - Core competencies and disciplinary practices
 Table 2.1 (pg 17)
 - ABS models vision and change pedagogy
 - Report could guide competency based assessment in ABS

Science Electives

ABS and electives in biology

- Only seniors take electives
- Fewer sections
- Authentic research based labs
- Deeper learning
- Science electives
 - A year-long core
 - Junior and senior electives in Chemistry and Physics
 - Electives change in response
 - Interdisciplinary electives
 - Authentic inquiry based courses

Recommend ABS in Junior Year

- Science education literature
 - Vision and change AAAS report
- Alignment with institutional priorities
 - UN SDG
 - Equity
- ABS study
 - Students in ABS had better grades than students in SI Biology
 - Students in ABS also had higher grades for all classes during their sophomore year
 - Higher GPAs have been shown to be a strong predictor for success in college
 - Allensworth et al.(2020) High School GPAs and ACT Scores as Predictors of College Completion: Examining Assumptions About Consistency Across High Schools. Educational Researcher. 47 (3),198-211

Future directions

- Recommendations for 20-21 school year
 - ABS in the junior year
 - Discontinue SI-Biology
- Work Plan for 21-22 school year
 - Begin to incorporate Methods of Scientific inquiry (MSI) into core curriculum and recommend graduation requirement changes to the Board of Trustees
 - Assess the staffing feasibility of a year-long chemistry and physics courses
 - Explore the rationale and develop curriculum for year-long chemistry and physics courses

