Recommendations for Core Biology Program to the Board of Trustees
May 20, 2020

Faculty: Dr. Don Dosch and Dr. Crystal Randall
OIR: Ms. Hannah Anderson and Dr. Amber Pareja
Administrators: Dr. Comfort Akwaji-Anderson and Dr. Robert Hernandez
Outline

Reimagining Introductory Biology: A Pilot Study (Office of Institutional Research)
- Response to research questions
- Changes to study design

Advanced Biological Systems (ABS) Pedagogy
- Alignment with institutional priorities
- Science education research
- Science elective courses

Future directions
- Recommendations for 20-21 school year
- Work Plan for 21-22 school year
Purpose of the Pilot Study

• To compare and contrast the effectiveness of the ABS course to the Scientific Inquiry (SI)-Biology course

• To identify whether the ABS course leads to:
 • Better teaching and learning of complex biological concepts
 • Better student outcomes
Research Questions

• Do students who complete the ABS course have an increased level of content knowledge and enhanced critical thinking, model-building, and ability to make connections to real world issues?
 • Are they more likely to get higher grades and less likely to fail the course?
 • Do they report higher levels of engagement with the course material?

• Do students who complete ABS course have better course performance in subsequent science courses?
 • How is their subsequent performance in other courses?

• Do students who complete the ABS course have a different electives-taking pattern?
Increased Content Knowledge and Enhanced Critical Thinking

• Pre-Post Study & Pre-Post Course Exams
 • Inconclusive based on the psychometric properties of the assessments (i.e., validity and reliability)

• CWRA+ Exam
 • No significant differences between ABS and SI-Biology in Fall 2017/Spring 2019 administrations
 • No significant differences in growth on CWRA+ from Fall 2017 to Spring 2019

• Lack of student effort on the Post-Study, Post-Course, & CWRA+ Exams may have influenced results
 • Students spent a minimal amount of time completing the assessments due to their low-stakes nature
Increased Content Knowledge and Enhanced Critical Thinking

• Biology Course Grades
 • On average, students in ABS received higher course grades than students in SI-Biology
 • Mean of 3.14 (SI-Bio) vs. 3.23 (ABS) with p < .05
Increased Content Knowledge and Enhanced Critical Thinking

- Biology Motivation Questionnaire II
 - Assesses five components of students’ motivation to learn Biology: Intrinsic Motivation, Self-Efficacy, Self-Determination, Grade Motivation, and Career Motivation (Glynn et al., 2011)
 - Results may have been influenced by student attitudes regarding the study

Motivation Questionnaire Mean Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Pre-Course</th>
<th>Post-Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI Bio</td>
<td>70.97</td>
<td>68.14</td>
</tr>
<tr>
<td>ABS</td>
<td></td>
<td>68.75</td>
</tr>
<tr>
<td>Pre-Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Course</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-Course: SI-Bio not significantly different than ABS

Post-Course: SI-Bio significantly stronger than ABS (p ≤ .001)
Performance in Non-Biology Courses

• Students in ABS received slightly higher grades than students in SI-Bio: 90.34 vs. 89.99 (p < .01)

• Grades by Year
 • ABS significantly higher than SI-Biology during sophomore year: 90.29 vs. 87.26 (p < .01)
 • No significant difference between ABS and SI-Biology during junior or senior years

• Science vs. Non-Science Grades
 • ABS significantly higher than SI-Biology for non-science courses, during sophomore year: 90.42 vs. 89.89 (p < .05)
 • No significant difference between ABS and SI-Bio for science courses, during sophomore year
 • No significant difference between for science and non-science courses during junior or senior years
Electives-Taking Pattern

• Students in ABS took fewer science electives during junior year compared to students in SI-Biology
• During senior year, the number of science electives was the same
Changes to Study Design

• Student Interviews
 • Study Effect
 • Incoming sophomores influenced by upperclassmen to oppose new ABS course
 • Opposition from some faculty members communicated to students
 • Difficult to assess whether or not the opinions held by the students are specific to the course or are a result of influences above
 • Significant time to interview, transcribe, code, and analyze
 • Substituted interviews with the Biology Motivation Questionnaire II to assess student engagement

• Teacher Journaling
 • Significant time to execute on a weekly basis
 • Substituted journaling with teacher interviews conducted about once a semester
Challenges with Data Interpretation

- **Assessments**
 - Significant student push back
 - Low stakes assessment
 - Exams inconclusive
 - ABS curriculum developed after the study began and not fully align with assessments

- **Student surveys (motivation and course)**
 - Students often resistant to active learning despite the benefits
ABS Pedagogy

- Alignment with institutional priorities
 - United Nations Sustainable Development Goals (UNSDG)
 - Provide context for curriculum
 - Allows students to see interdisciplinary nature of biological problems
 - Equity
 - Student centered learning
 - No prior knowledge needed
 - Increases student access to core concepts
 - Allows for differentiation and scaffolding
Vision and Change: A Science Education Report

- American Association for the Advancement of Science (AAAS): Vision and Change
 - Outlines best practices for teaching biology
 - Student centered learning
 - Content in context
 - Varied assessment strategies
 - Core competencies and disciplinary practices
 - Table 2.1 (pg 17)
 - ABS models vision and change pedagogy
 - Report could guide competency based assessment in ABS
Science Electives

- ABS and electives in biology
 - Only seniors take electives
 - Fewer sections
 - Authentic research based labs
 - Deeper learning

- Science electives
 - A year-long core
 - Junior and senior electives in Chemistry and Physics
 - Electives change in response
 - Interdisciplinary electives
 - Authentic inquiry based courses
Recommend ABS in Junior Year

- Science education literature
 - Vision and change AAAS report
- Alignment with institutional priorities
 - UN SDG
 - Equity
- ABS study
 - Students in ABS had better grades than students in SI Biology
 - Students in ABS also had higher grades for all classes during their sophomore year
 - Higher GPAs have been shown to be a strong predictor for success in college
Future directions

- Recommendations for 20-21 school year
 - ABS in the junior year
 - Discontinue SI-Biology

- Work Plan for 21-22 school year
 - Begin to incorporate Methods of Scientific inquiry (MSI) into core curriculum and recommend graduation requirement changes to the Board of Trustees
 - Assess the staffing feasibility of a year-long chemistry and physics courses
 - Explore the rationale and develop curriculum for year-long chemistry and physics courses